3 research outputs found

    ItyFuzz: Snapshot-Based Fuzzer for Smart Contract

    Full text link
    Smart contracts are critical financial instruments, and their security is of utmost importance. However, smart contract programs are difficult to fuzz due to the persistent blockchain state behind all transactions. Mutating sequences of transactions are complex and often lead to a suboptimal exploration for both input and program spaces. In this paper, we introduce a novel snapshot-based fuzzer ItyFuzz for testing smart contracts. In ItyFuzz, instead of storing sequences of transactions and mutating from them, we snapshot states and singleton transactions. To explore interesting states, ItyFuzz introduces a dataflow waypoint mechanism to identify states with more potential momentum. ItyFuzz also incorporates comparison waypoints to prune the space of states. By maintaining snapshots of the states, ItyFuzz can synthesize concrete exploits like reentrancy attacks quickly. Because ItyFuzz has second-level response time to test a smart contract, it can be used for on-chain testing, which has many benefits compared to local development testing. Finally, we evaluate ItyFuzz on real-world smart contracts and some hacked on-chain DeFi projects. ItyFuzz outperforms existing fuzzers in terms of instructional coverage and can find and generate realistic exploits for on-chain projects quickly.Comment: ISSTA 202

    SlimFit: Memory-Efficient Fine-Tuning of Transformer-based Models Using Training Dynamics

    Full text link
    Transformer-based models, such as BERT and ViT, have achieved state-of-the-art results across different natural language processing (NLP) and computer vision (CV) tasks. However, these models are extremely memory intensive during their fine-tuning process, making them difficult to deploy on GPUs with limited memory resources. To address this issue, we introduce a new tool called SlimFit that reduces the memory requirements of these models by dynamically analyzing their training dynamics and freezing less-contributory layers during fine-tuning. The layers to freeze are chosen using a runtime inter-layer scheduling algorithm. SlimFit adopts quantization and pruning for particular layers to balance the load of dynamic activations and to minimize the memory footprint of static activations, where static activations refer to those that cannot be discarded regardless of freezing. This allows SlimFit to freeze up to 95% of layers and reduce the overall on-device GPU memory usage of transformer-based models such as ViT and BERT by an average of 2.2x, across different NLP and CV benchmarks/datasets such as GLUE, SQuAD 2.0, CIFAR-10, CIFAR-100 and ImageNet with an average degradation of 0.2% in accuracy. For such NLP and CV tasks, SlimFit can reduce up to 3.1x the total on-device memory usage with an accuracy degradation of only up to 0.4%. As a result, while fine-tuning of ViT on ImageNet and BERT on SQuAD 2.0 with a batch size of 128 requires 3 and 2 32GB GPUs respectively, SlimFit enables their fine-tuning on a single 32GB GPU without any significant accuracy degradation
    corecore